segatools/chuniio/chuniio.h

166 lines
6.0 KiB
C

#pragma once
/*
CHUNITHM CUSTOM IO API
Changelog:
- 0x0100: Initial API version (assumed if chuni_io_get_api_version is not
exported)
- 0x0101: Fix IR beam mappings
*/
#include <windows.h>
#include <stdbool.h>
#include <stdint.h>
enum {
CHUNI_IO_OPBTN_TEST = 0x01,
CHUNI_IO_OPBTN_SERVICE = 0x02,
CHUNI_IO_OPBTN_COIN = 0x04,
};
/* Get the version of the Chunithm IO API that this DLL supports. This
function should return a positive 16-bit integer, where the high byte is
the major version and the low byte is the minor version (as defined by the
Semantic Versioning standard).
The latest API version as of this writing is 0x0101. */
uint16_t chuni_io_get_api_version(void);
/* Initialize JVS-based input. This function will be called before any other
chuni_io_jvs_*() function calls. Errors returned from this function will
manifest as a disconnected JVS bus.
All subsequent calls may originate from arbitrary threads and some may
overlap with each other. Ensuring synchronization inside your IO DLL is
your responsibility.
Minimum API version: 0x0100 */
HRESULT chuni_io_jvs_init(void);
/* Poll JVS input.
opbtn returns the cabinet test/service state, where bit 0 is Test and Bit 1
is Service.
beam returns the IR beams that are currently broken, where bit 0 is the
lowest IR beam and bit 5 is the highest IR beam, for a total of six beams.
Both bit masks are active-high.
Note that you cannot instantly break the entire IR grid in a single frame to
simulate hand movement; this will be judged as a miss. You need to simulate
a gradual raising and lowering of the hands. Consult the proof-of-concept
implementation for details.
NOTE: Previous releases of Segatools mapped the IR beam inputs incorrectly.
Please ensure that you advertise an API version of at least 0x0101 so that
the correct mapping can be used.
Minimum API version: 0x0100
Latest API version: 0x0101 */
void chuni_io_jvs_poll(uint8_t *opbtn, uint8_t *beams);
/* Read the current state of the coin counter. This value should be incremented
for every coin detected by the coin acceptor mechanism. This count does not
need to persist beyond the lifetime of the process.
Minimum API version: 0x0100 */
void chuni_io_jvs_read_coin_counter(uint16_t *total);
/* Initialize touch slider emulation. This function will be called before any
other chuni_io_slider_*() function calls.
All subsequent calls may originate from arbitrary threads and some may
overlap with each other. Ensuring synchronization inside your IO DLL is
your responsibility.
Minimum API version: 0x0100 */
HRESULT chuni_io_slider_init(void);
/* Chunithm touch slider layout:
^^^ Toward screen ^^^
----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
31 | 29 | 27 | 25 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 |
----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
32 | 30 | 28 | 26 | 24 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 |
----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
There are a total of 32 regions on the touch slider. Each region can return
an 8-bit pressure value. The operator menu allows the operator to adjust the
pressure level at which a region is considered to be pressed; the factory
default value for this setting is 20. */
/* Callback function supplied to your IO DLL. This must be called with a
pointer to a 32-byte array of pressure values, one byte per slider cell.
See above for layout and pressure threshold information.
The callback will copy the pressure state data out of your buffer before
returning. The pointer will not be retained. */
typedef void (*chuni_io_slider_callback_t)(const uint8_t *state);
/* Start polling the slider. Your DLL must start a polling thread and call the
supplied function periodically from that thread with new input state. The
update interval is up to you, but if your input device doesn't have any
preferred interval then 1 kHz is a reasonable maximum frequency.
Note that you do have to have to call the callback "occasionally" even if
nothing is changing, otherwise the game will raise a comm timeout error.
Minimum API version: 0x0100 */
void chuni_io_slider_start(chuni_io_slider_callback_t callback);
/* Stop polling the slider. You must cease to invoke the input callback before
returning from this function.
This *will* be called in the course of regular operation. For example,
every time you go into the operator menu the slider and all of the other I/O
on the cabinet gets restarted.
Following on from the above, the slider polling loop *will* be restarted
after being stopped in the course of regular operation. Do not permanently
tear down your input driver in response to this function call.
Minimum API version: 0x0100 */
void chuni_io_slider_stop(void);
/* Update the RGB lighting on the slider. A pointer to an array of 32 * 3 = 96
bytes is supplied. The illuminated areas on the touch slider are some
combination of rectangular regions and dividing lines between these regions
but the exact mapping of this lighting control buffer is still TBD.
Minimum API version: 0x0100 */
void chuni_io_slider_set_leds(const uint8_t *rgb);
/* Initialize LED emulation. This function will be called before any
other chuni_io_led_*() function calls.
All subsequent calls may originate from arbitrary threads and some may
overlap with each other. Ensuring synchronization inside your IO DLL is
your responsibility. */
int chuni_io_led_init();
/* Update the RGB LEDs. rgb is a pointer to an array of 66 * 3 = 198
bytes. The majority of these are for the marquee display, but the final
LEDs are for the side partitions.
Chunithm uses two chains/boards. One is on the left side and one on the
right side of the cab. Exact layout is TBD. */
void chuni_io_led_set_colors(uint8_t board, uint8_t *rgb);