#include #include #include #include #include "board/io4.h" #include "tokyohook/tokyo-dll.h" #include "util/dprintf.h" static HRESULT tokyo_io4_poll(void *ctx, struct io4_state *state); static HRESULT tokyo_io4_write_gpio(uint8_t* payload, size_t len); static uint16_t coins; static const struct io4_ops tokyo_io4_ops = { .poll = tokyo_io4_poll, .write_gpio = tokyo_io4_write_gpio, }; HRESULT tokyo_io4_hook_init(const struct io4_config *cfg) { HRESULT hr; assert(tokyo_dll.init != NULL); hr = io4_hook_init(cfg, &tokyo_io4_ops, NULL); if (FAILED(hr)) { return hr; } return tokyo_dll.init(); } static HRESULT tokyo_io4_poll(void *ctx, struct io4_state *state) { uint8_t opbtn; uint8_t gamebtn; uint8_t sense; HRESULT hr; assert(tokyo_dll.get_opbtns != NULL); assert(tokyo_dll.get_gamebtns != NULL); assert(tokyo_dll.get_sensors != NULL); memset(state, 0, sizeof(*state)); opbtn = 0; gamebtn = 0; sense = 0; tokyo_dll.get_opbtns(&opbtn); tokyo_dll.get_gamebtns(&gamebtn); tokyo_dll.get_sensors(&sense); if (opbtn & TOKYO_IO_OPBTN_TEST) { state->buttons[0] |= IO4_BUTTON_TEST; } if (opbtn & TOKYO_IO_OPBTN_SERVICE) { state->buttons[0] |= IO4_BUTTON_SERVICE; } if (opbtn & TOKYO_IO_OPBTN_COIN) { coins++; } state->chutes[0] = coins << 8; /* Update gamebtns */ if (gamebtn & TOKYO_IO_GAMEBTN_BLUE) { state->buttons[0] |= 1 << 1; } if (gamebtn & TOKYO_IO_GAMEBTN_YELLOW) { state->buttons[0] |= 1 << 0; } if (gamebtn & TOKYO_IO_GAMEBTN_RED) { state->buttons[0] |= 1 << 15; } /* Update sensors */ // Invert the logic so that it's active high if (!(sense & TOKYO_IO_SENSE_FOOT_LEFT)) { state->buttons[0] |= 1 << 13; } if (!(sense & TOKYO_IO_SENSE_FOOT_RIGHT)) { state->buttons[1] |= 1 << 13; } if (sense & TOKYO_IO_SENSE_JUMP_1) { state->buttons[0] |= 1 << 12; } if (sense & TOKYO_IO_SENSE_JUMP_2) { state->buttons[1] |= 1 << 12; } if (sense & TOKYO_IO_SENSE_JUMP_3) { state->buttons[0] |= 1 << 11; } if (sense & TOKYO_IO_SENSE_JUMP_4) { state->buttons[1] |= 1 << 11; } if (sense & TOKYO_IO_SENSE_JUMP_5) { state->buttons[0] |= 1 << 10; } if (sense & TOKYO_IO_SENSE_JUMP_6) { state->buttons[1] |= 1 << 10; } return S_OK; } static HRESULT tokyo_io4_write_gpio(uint8_t* payload, size_t len) { // Just fast fail if there aren't enough bytes in the payload if (len < 3) return S_OK; // This command is used for lights in Mario & Sonic at the Tokyo 2020 Olympics // Arcade, but it only contains button lights, and only in the first 3 bytes of // the payload; everything else is padding to make the payload 62 bytes. The // rest of the cabinet lights and the side button lights are handled separately, // by the 15093 lights controller. uint32_t lights_data = (uint32_t) ((uint8_t)(payload[0]) << 24 | (uint8_t)(payload[1]) << 16 | (uint8_t)(payload[2]) << 8); // Since Sega uses an odd ordering for the first part of the bitfield, // let's normalize the data and just send over bytes for the receiver // to interpret as RGB values. uint8_t rgb_out[5 * 3] = { lights_data & TOKYO_IO_LED_LEFT_BLUE ? 0xFF : 0x00, lights_data & TOKYO_IO_LED_CENTER_YELLOW ? 0xFF : 0x00, lights_data & TOKYO_IO_LED_RIGHT_RED ? 0xFF : 0x00, lights_data & TOKYO_IO_LED_CONTROL_LEFT_R ? 0xFF : 0x00, lights_data & TOKYO_IO_LED_CONTROL_LEFT_G ? 0xFF : 0x00, lights_data & TOKYO_IO_LED_CONTROL_LEFT_B ? 0xFF : 0x00, lights_data & TOKYO_IO_LED_CONTROL_RIGHT_R ? 0xFF : 0x00, lights_data & TOKYO_IO_LED_CONTROL_RIGHT_G ? 0xFF : 0x00, lights_data & TOKYO_IO_LED_CONTROL_RIGHT_B ? 0xFF : 0x00, lights_data & TOKYO_IO_LED_FLOOR_LEFT_R ? 0xFF : 0x00, lights_data & TOKYO_IO_LED_FLOOR_LEFT_G ? 0xFF : 0x00, lights_data & TOKYO_IO_LED_FLOOR_LEFT_B ? 0xFF : 0x00, lights_data & TOKYO_IO_LED_FLOOR_RIGHT_R ? 0xFF : 0x00, lights_data & TOKYO_IO_LED_FLOOR_RIGHT_G ? 0xFF : 0x00, lights_data & TOKYO_IO_LED_FLOOR_RIGHT_B ? 0xFF : 0x00, }; tokyo_dll.led_set_leds(1, rgb_out); return S_OK; }